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Abstract
Although public awareness of the need for secu-

rity in computing systems is growing rapidly, current
efforts to provide security are unlikely to succeed.
Current security efforts suffer from the flawed
assumption that adequate security can be provided in
applications with the existing security mechanisms of
mainstream operating systems. In reality, the need for
secure operating systems is growing in today’s com-
puting environment due to substantial increases in
connectivity and data sharing. The goal of this paper
is to motivate a renewed interest in secure operating
systems so that future security efforts may build on a
solid foundation. This paper identifies several secure
operating system features which are lacking in main-
stream operating systems, argues that these features
are necessary to adequately protect general applica-
tion-space security mechanisms, and provides con-
crete examples of how current security solutions are
critically dependent on these features.

Keywords: secure operating systems, mandatory se-
curity, trusted path, Java, Kerberos, IPSEC, SSL, fire-
walls.

1 Introduction
Public awareness of the need for security in com-

puting systems is growing as critical services are
becoming increasingly dependent on interconnected
computing systems. National infrastructure compo-
nents such as the electric power, telecommunication
and transportation systems can no longer function
without networks of computers [50]. The advent of
the World Wide Web has especially increased public
concern for security. Security is the primary concern
of businesses which want to use the Internet for com-
merce and maintaining business relationships [24].

The increased awareness of the need for security
has resulted in an increase of efforts to add security to
computing environments. However, these efforts suf-
fer from the flawed assumption that security can ade-
quately be provided in application space without
certain security features in the operating system. In

reality, operating system security mechanisms play a criti-
cal role in supporting security at higher levels. This has
been well understood for at least twenty five years
[2][54][39], and continues to be reaffirmed in the literature
[1][35]. Yet today, debate in the research community as to
what role operating systems should play in secure systems
persists [11]. The computer industry has not accepted the
critical role of the operating system to security, as evi-
denced by the inadequacies of the basic protection mecha-
nisms provided by current mainstream operating systems.

The necessity of operating system security to overall
system security is undeniable; the underlying operating
system is responsible for protecting application-space
mechanisms against tampering, bypassing, and spoofing
attacks. If it fails to meet this responsibility, system-wide
vulnerabilities will result.

The need for secure operating systems is especially
crucial in today’s computing environment. Substantial
increases in connectivity and data sharing have increased
the risk to systems such that even a careful and knowl-
edgeable user running on a single-user system is no longer
safe from the threat of malicious code. Because the dis-
tinction between data and code is vanishing, malicious
code may be introduced, without a conscious decision on
the part of a user to install executable code, whenever data
is imported into the system. For example, malicious code
could be introduced with a Java applet or by viewing
apparently benign data that, in actuality, contains execut-
able code [32][62]. More so than ever, secure operating
systems are needed to protect against this threat.

The goal of this paper is to motivate a renewed inter-
est in secure operating systems. By consolidating a num-
ber of well-documented examples from the literature, it
argues that the threats posed by the modern computing
environment cannot be addressed without support from
secure operating systems and, as was stated in [8], that any
security effort which ignores this fact can only result in a
“fortress built upon sand.” Section 2 describes a set of
secure operating system features which are typically lack-
ing in mainstream operating systems but are crucial to
information security. The need for these features is high-
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lighted in section 3, which examines how application-
space access control and cryptography cannot provide
meaningful security without a secure operating system.
Section 4 provides concrete examples of how security
efforts rely on these operating system security features.
Section 5 discusses the role of operating system security
with respect to overall system security.

2 The Missing Link
This section identifies some features of secure oper-

ating systems which are necessary to protect applica-
tion-space security mechanisms yet are lacking in
mainstream operating systems. They form the “missing
link” of security. Although this section only deals with
features, it is important to note that features alone are
inadequate. Assurance evidence must be provided to
demonstrate that the features meet the desired system
security properties and to demonstrate that the features
are implemented correctly. Assurance is the ultimate
missing link; although approaches to providing assur-
ance may be controversial, the importance of assurance
is undeniable.

The list of features in this section is not intended to
be exhaustive; instead it is merely a small set of critical
features that demonstrate the value of secure operating
systems. A more complete discussion on secure operat-
ing systems, including discussions of assurance, can be
found in [25], [59] or [20]. Subsequent sections argue
the necessity of these features by describing how appli-
cation-space security mechanisms and current security
efforts employing them are vulnerable in their absence.

Mandatory security

The TCSEC [20] provides a narrow definition of
mandatory security which is tightly coupled to the
multi-level security policy of the Department of
Defense. This has become the commonly understood
definition for mandatory security. However, this defini-
tion is insufficient to meet the needs of either the
Department of Defense or private industry as it ignores
critical properties such as intransitivity and dynamic
separation of duty [12][22]. This paper instead uses the
more general notion of mandatory security defined in
[59], in which a mandatory security policy is considered
to be any security policy where the definition of the pol-
icy logic and the assignment of security attributes is
tightly controlled by a system security policy adminis-
trator. Mandatory security can implement organization-
wide security policies. Others have referred to this same
concept as non-discretionary security in the context of

role-based access control [22] and type enforcement
[39][7][13].1

Likewise, as defined in [59], this paper uses a more
general notion of discretionary security in which a dis-
cretionary security policy is considered to be any secu-
rity policy where ordinary users may be involved in the
definition of the policy functions and/or the assignment
of security attributes. Here discretionary security is not
synonymous with identity based access control; IBAC,
like any other security policy, may be either mandatory
or discretionary[58].

An operating system’s mandatory security policy
may be divided into several kinds of policies, such as an
access control policy, an authentication usage policy,
and a cryptographic usage policy. A mandatory access
control policy specifies how subjects may access objects
under the control of the operating system. A mandatory
authentication usage policy specifies what authentica-
tion mechanisms must be used to authenticate a princi-
pal to the system. A mandatory cryptographic usage
policy specifies what cryptographic mechanisms must
be used to protect data. Additionally, various sub-
systems of the operating system may have their own
mechanism usage policies. These subsystem-specific
usage policies may be dependent on the cryptographic
usage policy. For example, a network usage policy for a
router might specify that sensitive network traffic should
be protected using IPSEC ESP [4] in tunneling mode
prior to being sent to an external network. The selection
of a cryptographic algorithm for IPSEC ESP may be
deferred to the cryptographic usage policy.

A secure system must provide a framework for
defining the operating system’s mandatory security pol-
icy and translating it to a form interpretable by the
underlying mandatory security mechanisms of the oper-
ating system. Without such a framework, there can be
no real confidence that the mandatory security mecha-
nisms will provide the desired security properties.

An operating system which provides mandatory
security may nonetheless suffer from the presence of
high bandwidth covert channels. This is an issue when-
ever the mandatory security policy is concerned with
confidentiality. This should not, however, be a reason to
ignore mandatory security. Even with covert channels,
an operating system with basic mandatory controls
improves security by increasing the required sophistica-

1. Actually, long ago, the term non-discretionary controls
was used for multi-level security as well [39].
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tion of the adversary. Once systems with basic manda-
tory controls become mainstream, covert channel
exploitation will become more common and public
awareness of the need to address covert channels in
computing systems will increase[57].

In any system which supports mandatory security,
some applications require special privileges in the man-
datory policy in order to perform some security-relevant
function. Such applications are frequently called trusted
applications because they are trusted to correctly per-
form some security-related function and because they
are trusted to not misuse privileges required in order to
perform that function. If the mandatory security mecha-
nisms of a secure operating system only support coarse-
grained privileges, then the security of the overall sys-
tem may devolve to the security of the trusted applica-
tions on the system. To reduce the dependency on
trusted applications, the mandatory security mecha-
nisms of an operating system should be designed to sup-
port the principle of least privilege. Type enforcement is
an example of a mandatory security mechanism which
may be used both to limit trusted applications to the
minimal set of privileges required for their function and
to confine the damage caused by any misuse of these
privileges [48][28].

The mandatory security mechanisms of an operat-
ing system may be used to support security-related func-
tionality in applications by rigorously ensuring that
subsystems are unbypassable and tamperproof. For
example, type enforcement may be used to implement
assured pipelines to provide these properties. An
assured pipeline ensures that data flowing from a desig-
nated source to a designated destination must pass
through a security-related subsystem and ensures the
integrity of the subsystem. Many of the security require-
ments of these applications may be ensured by the
underlying mandatory security mechanisms of the oper-
ating system. [48]

Operating system mandatory security mechanisms
may also be used to rigorously confine an application to
a unique security domain that is strongly separated from
other domains in the system. Applications may still mis-
behave, but the resulting damage can now be restricted
to within a single security domain. This confinement
property is critical to controlling data flows in support of
a system security policy [33]. In addition to supporting
the safe execution of untrustworthy software, confine-
ment may support functional requirements, such as an
isolated testing environment or an insulated develop-

ment environment [48]. For example both the
Sidewinder firewall and the DTE firewall use type
enforcement for confinement [6][12].

Although one could attempt to enforce a mandatory
security policy through discretionary security mecha-
nisms, such mechanisms can not defend against careless
or malicious users. Since discretionary security mecha-
nisms place the burden for security on the individual
users, carelessness by any one user at any point in time
may lead to a violation of the mandatory policy. In con-
trast, mandatory security mechanisms limit the burden
to the system security policy administrator. With only
discretionary mechanisms, a malicious user with access
to sensitive data and applications may directly release
sensitive information in violation of the mandatory pol-
icy. Although that same user may also be able to leak
sensitive information in ways that do not involve the
computing system, the ability to leak the information
through the computing system may increase the band-
width of the leak and may decrease its traceability. In
contrast, with mandatory security mechanisms, he may
only leak sensitive information through covert channels,
which limits the bandwidth and increases accountability,
if covert channels are audited.

Furthermore, even with users who are benign and
careful, the mandatory security policy may still be sub-
verted by flawed or malicious applications when only
discretionary mechanisms are used to enforce it.2 The
distinction between flawed and malicious software is not
particularly important in this paper. In either case, an
application may fail to apply security mechanisms
required by the mandatory policy or may use security
mechanisms in a way that is inconsistent with the user’s
intent. Mandatory security mechanisms may be used to
ensure that security mechanisms are applied as required
and can protect the user against inadvertent execution of
untrustworthy applications. Although the user may have
carefully defined the discretionary policy to properly
implement the mandatory policy, an application may
change the discretionary policy without the user’s
approval or knowledge. In contrast, the mandatory pol-
icy may only be changed by the system security policy
administrator.

In the case of personal computing systems, where
the user may be the system security policy administra-
tor, mandatory security mechanisms are still helpful in

2. A discussion of the formal limitations of discretionary
security mechanisms appears in [29].
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protecting against flawed or malicious software. In the
simplest case, where there is only a distinction between
the user’s ordinary role and the user’s role as system
security policy administrator, the mandatory security
mechanisms can protect the user against unintentional
execution of untrustworthy software. With a further sub-
division of the user’s ordinary role into various roles
based on function, mandatory security mechanisms can
confine the damage that may be caused by flawed or
malicious software.

Although there are a number of commercial operat-
ing systems with support for mandatory security, none
of these systems have become mainstream. These sys-
tems have suffered from a fixed notion of mandatory
security, thereby limiting their market appeal. Further-
more, these systems typically lack adequate support for
constraining trusted applications. In order to reach a
wider market, operating systems must support a more
general notion of mandatory security and must support
flexible configuration of mandatory policies.

Mainstream commercial operating systems rarely
support the principle of least privilege even in their dis-
cretionary access control architecture. Many operating
systems only provide a distinction between a completely
privileged security domain and a completely unprivi-
leged security domain. Even in Microsoft Windows NT,
the privilege mechanism fails to adequately protect
against malicious programs because it does not limit the
privileges that a program inherits from the invoking pro-
cess based on the trustworthiness of the program [65].

Current microkernel-based research operating sys-
tems have tended to focus on providing primitive protec-
tion mechanisms which may be used to flexibly
construct a higher-level security architecture. Many of
these systems, such as the Fluke microkernel [23] and
the Exokernel [41], use kernel-managed capabilities as
the underlying protection mechanism. However, as dis-
cussed in [59], typical capability architectures are inade-
quate for supporting mandatory access controls with a
high degree of flexibility and assurance. L4 [38] pro-
vides some support for mandatory controls through its
clans and chiefs mechanism and its IPC mechanism for
identifying senders and receivers but still lacks a coher-
ent framework for using these mechanisms to meet the
requirements of a mandatory policy. Furthermore, L4
assumes that there will only be a small number of dis-
tinct security domains [38]. Flask [56], a variant of the
Fluke microkernel, provides a mandatory security
framework similar to that of DTOS [43], a variant of the

Mach microkernel; both systems provide mechanisms
for mandatory access control and a mandatory policy
framework.

Trusted path

A trusted path is a mechanism by which a user may
directly interact with trusted software, which can only
be activated by either the user or the trusted software
and may not be imitated by other software [20]. In the
absence of a trusted path mechanism, malicious soft-
ware may impersonate trusted software to the user or
may impersonate the user to trusted software. Such
malicious software could potentially obtain sensitive
information, perform functions on behalf of the user in
violation of the user’s intent, or trick the user into
believing that a function has been invoked without actu-
ally invoking it. In addition to supporting trusted soft-
ware in the base system, the trusted path mechanism
should be extensible to support the subsequent addition
of trusted applications by a system security policy
administrator [28].

The concept of a trusted path can be generalized to
include interactions beyond just those between trusted
software and users. The TNI introduces the concept of a
trusted channel for communication between trusted soft-
ware on different network components [44]. More gen-
erally, a mechanism that guarantees a mutually
authenticated channel, or protected path, is necessary to
ensure that critical system functions are not being
spoofed. Although a protected path mechanism for local
communications could be constructed in application
space without direct authentication support in the oper-
ating system, it is preferable for an operating system to
provide its own protected path mechanism since such a
mechanism will be simpler to assure [59] and is likely to
be more efficient.

Most mainstream commercial operating systems
are utterly lacking in their support for either a trusted
path mechanism or a protected path mechanism.
Microsoft Windows NT does provide a trusted path for a
small set of functions such as login authentication and
password changing but lacks support for extending the
trusted path mechanism to other trusted applications
[65]. For local communications, NT does provide serv-
ers with the identity of their clients; however, it does not
provide the server identity to the client.

3 General Examples
This section argues that without operating system

support for mandatory security and trusted path, appli-
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cation-space mechanisms for access control and cryp-
tography cannot be implemented securely. These
arguments will then be used to reinforce the discussion
in section 4, which analyzes concrete examples.

3.1 Access Control
An application-space access control mechanism

may be decomposed into an enforcer component and a
decider component. When a subject attempts to access
an object protected by the mechanism, the enforcer
component must invoke the decider component, supply-
ing it with the proper input parameters for the policy
decision, and must enforce the returned decision. A
common example of the required input parameters is the
security attributes of the subject and the object. The
decider component may also consult other external
sources in order to make the policy decision. For exam-
ple, it may use an external policy database and system
information such as the current time.

If a malicious agent can tamper with any of the
components in the access control mechanism or with
any inputs to the decision, then the malicious agent can
subvert the access control mechanism. Even if the com-
ponents and all of the inputs are collocated within a sin-
gle file, the operating system security mechanisms are
still relied upon to protect the integrity of that file. As
discussed in the prior section, only mandatory security
mechanisms can rigorously provide such integrity guar-
antees.

Even with strong integrity guarantees for the policy
decision inputs, if an authorized user invokes malicious
software, the malicious software could change an
object’s security attributes or the policy database’s rules
without the user’s knowledge or consent. The access
control mechanism requires a trusted path mechanism in
the operating system in order to ensure that arbitrary
propagation of access cannot occur without explicit
authorization by a user.

If a malicious agent can impersonate the decider
component to the enforcer component, or if a malicious
agent can impersonate any source of inputs to the deci-
sion, then the malicious agent can subvert the mecha-
nism. If any of the components or external decision
input sources are not collocated within a single applica-
tion, then the access control mechanism requires a pro-
tected path mechanism.

If a malicious agent can bypass the enforcer compo-
nent, then it may trivially subvert the access control
mechanism. Mandatory security mechanisms in the

operating system may be used to ensure that all accesses
to the protected objects are mediated by the enforcer
component.

3.2 Cryptography
An analysis of application-space cryptography may

be decomposed into an analysis of the invocation of the
cryptographic mechanism and an analysis of the crypto-
graphic mechanism itself. The analysis of this section
draws from the discussions in [51][15] [60][61][55][52].

As an initial basis for discussion, suppose that the
cryptographic mechanism is a hardware token that
implements the necessary cryptographic functions cor-
rectly and that there is a secure means by which the
cryptographic keys are established in the token. Even in
this simplified case, where the confidentiality and integ-
rity of algorithms and keys is achieved without operat-
ing system support, this section will demonstrate that
there are still vulnerabilities which may only be effec-
tively addressed with the features of a secure operating
system.

One vulnerability in this simplified case is that
invocation of the token cannot be guaranteed. Any legit-
imate attempt to use the token might not result in a call
to the token. The application that performs the crypto-
graphic invocation might be bypassed or modified by
malicious applications or malicious users. Malicious
applications might impersonate the cryptographic token
to the invoking application.

Mandatory security and protected path features in
the operating system address this vulnerability. Manda-
tory security mechanisms may be used to ensure that the
application that invokes the cryptographic token is
unbypassable and tamperproof against both malicious
software and malicious users. Unbypassability could
also be achieved by using an inline cryptographic token,
which is physically interposed between the sender of the
data to be protected and the receiver of the protected
data; however, this would be less flexible. A protected
path mechanism may be used to ensure that malicious
software cannot impersonate the cryptographic token to
the invoking application.

Misuse of the cryptographic token is a second vul-
nerability in the simplified case. Misuse may involve the
use of a service, algorithm, session or key by an unau-
thorized application. Without operating system support
for identifying callers, a cryptographic token can do lit-
tle more than require that a user activate it, after which,
any service, algorithm, session or key authorized for that
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user may be used by any application on the system. In
this case, the cryptographic token may be misused by
applications operating on behalf of other users or may
be misused by malicious software operating on behalf of
the authorized user. Furthermore, unless the crypto-
graphic token has a direct physical interface for user
activation, malicious software can spoof the token to the
user, obtain authentication information, and subse-
quently activate the cryptographic token without the
user’s knowledge or consent. Even with a direct physi-
cal interface to the user, it is impractical for the crypto-
graphic token to require user confirmation for every
cryptographic operation.

This second vulnerability may be addressed
through mandatory security, trusted path and protected
path features in the operating system. A trusted path
mechanism obviates the need for a separate physical
interface for activation. A protected path mechanism
permits the cryptographic token to identify its callers
and enforce fine-grained controls over the use of ser-
vices, algorithms, sessions and keys. As an alternative to
having the token deal with fine-grained controls over its
usage, mandatory security mechanisms may also be
used to provide such controls. For example, mandatory
security mechanisms may be used to isolate the token
for use only by applications executed by the user who
activated the token. Furthermore, the mandatory secu-
rity mechanisms can reduce the risk of malicious soft-
ware being able to use the cryptographic token and may
consequently limit the use of the trusted path mecha-
nism to highly sensitive actions.

Hence, even in the simplest case, the features of a
secure operating system are crucial to addressing the
vulnerabilities of application-space cryptography. In the
remainder of this section, the assumptions of the simpli-
fied case are removed, and the additional vulnerabilities
are examined.

If the assumption that initial keys are securely
established within the token is removed, then there is the
additional vulnerability that the initial keys may be
observed or modified by an unauthorized entity. Unless
the initial keys are provided via a dedicated physical
interface to the cryptographic token, the operating sys-
tem must protect the path between the initial key source
and the cryptographic token and may need to protect the
initial key source itself. Mandatory security mechanisms
may be used to rigorously protect the path and the key
source. A trusted path may be required for initial keying.

If the assumption that the cryptographic mechanism
is confined to a single hardware token is removed and
implemented in software instead, the confidentiality and
integrity of the cryptographic mechanism’s code and
data becomes dependent on the operating system,
including both memory protection and file protection.
Mandatory security is needed to rigorously ensure the
mechanism’s integrity and confidentiality. If any exter-
nal inputs, such as input parameters to a random number
generator, are used by the cryptographic mechanism, the
input sources and the path between the input sources
and the cryptographic mechanism must be protected
with mandatory security mechanisms.

4 Concrete Examples
This section further demonstrates that secure oper-

ating systems are necessary by showing that some
widely accepted security solutions critically rely on the
features of secure operating systems. In particular, this
section examines mobile code security efforts, the Ker-
beros network authentication system, firewalls and net-
work security protocols.

4.1 Mobile Code
A number of independently-developed security

solutions for the World Wide Web, each with its own
protection model, have been developed to protect
against the threats from malicious mobile code. How-
ever, systems relying on these security solutions are vul-
nerable because of a lack of operating system support
for security. Primarily, this section will emphasize this
point by focusing on efforts to secure Java [27], but
other efforts will also be used to highlight issues.

The primary threat that these solutions attempt to
address is the threat of hostile mobile code gaining
unauthorized access to a user’s files and resources in
order to compromise confidentiality or integrity. The
threat is not limited to interpreted applets loaded from
the network by a web browser; both [26] and [30]
extend this threat model to include helper applications
which may have been actively installed by a user. There
is little distinction between mobile code and what is tra-
ditionally considered data. For example, consider that
Postscript documents are actually programs with poten-
tial access to the local filesystem. Consequently, helper
applications which operate on untrustworthy data, such
as Postscript viewers, must either be executed in a less
flexible mode of operation, or must be carefully con-
fined by the operating system.
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The basic Java Security Model is based on the
notion of “sandboxing.” The system relies on the type-
safety of the language in conjunction with the Java
Security Manager to prevent unauthorized actions [27].
Efforts are currently underway to add additional security
features to Java, such as capabilities, an expanded
access control model, or additional controls over access
to certain class libraries [70].

The fundamental limitation of these approaches is
that none can be guaranteed to be tamperproof or unby-
passable. For example, although the Java language is
claimed to be secure, the Java Virtual Machine (JVM)
will accept byte code which violates the language
semantics and which can lead to security violations [32].
JVM implementation errors have led to violations of the
language’s semantics [19]. A significant portion of the
Java system is currently in the form of native methods
which are implemented as object code and are not sub-
ject to the JVM’s type-safety checks. The JVM is not
able to protect itself from tampering by other applica-
tions. Finally, the Java security model can offer no pro-
tection from the many other forms of malicious mobile
code. In [30], the authors call for trusted systems to sup-
port a system-wide solution to address the threats pre-
sented by non-Java code.

Even if such problems with the JVM did not exist,
these security solutions would still suffer from the fun-
damental limitation that they rely on application-space
access control for security. They all depend on the local
file system to preserve the integrity of the system code,
including class files. All of the systems which store pol-
icy locally depend on file system access control to pre-
serve the integrity of the policy files. Section 3.1
demonstrated the importance of secure operating system
features for supporting application-space access control.

Another popular approach to “securing” mobile
code is to require digitally signed applets and limit exe-
cution to those originating from trusted sources [27]. In
fact, native ActiveX security is based entirely on digital
signatures, as it has no form of access control [24][27].
The basic flaw with this approach is that it is an all-or-
nothing proposition; the user cannot constrain a native
ActiveX control to a limited security domain. Manda-
tory security mechanisms in the operating system may
be used for this purpose, by confining the browser to a
distinct security domain.

Note that, although not sufficient by themselves,
digital signatures will play an important part in mobile
code security, even on secure operating systems. They

can reduce the risk of malicious code entering the sys-
tem, provide some measure of trust that an applet will
behave properly, and provide another piece of informa-
tion to use in making an access control decision. How-
ever, as with the general application-space cryptography
described in section 3.2, the digital signature verifica-
tion mechanism depends on secure operating system
features to guarantee invocation, to protect the integrity
of the mechanism, and to protect the integrity of the
locally cached public keys.

The need for an operating system trusted path
mechanism was highlighted by [67] which demonstrates
the ease with which a trojan horse applet can capture
credit card numbers, PIN numbers or passwords by per-
fectly emulating a window system dialog box. The pro-
posed solution was an ad hoc user-level trusted path
mechanism which required a user to customize his dia-
log box with a complicated graphical pattern. This solu-
tion is not adequate as it only increases the
sophistication required in the trojan horse.

Other systems attempt to provide alternative secu-
rity solutions to the mobile code threat. The Janus sys-
tem [26] interposes on Solaris system calls to constrain
untrusted native applications, and Safe-Tcl [49] pro-
vides a “safe interpreter” which attempts to limit the
command set available to untrusted code. However, like
the Java security solutions, these systems are subject to
the same vulnerabilities as any other application-space
access control mechanism; consequently, they require
secure operating system support.

Beyond enabling all of the mobile code systems
mentioned above to function securely, a secure system
could also simplify them. Rather than implementing
their security primitives in application space where they
are vulnerable, they could utilize the system security
services to provide a better overall system. A properly
designed secure system would provide a flexible, eco-
nomic foundation with one consistent security model for
all of the different virtual machine efforts to use.

4.2 Kerberos
Kerberos [31][47] is a network authentication ser-

vice originally developed for Project Athena at MIT. In
addition to providing an authentication service, Ker-
beros supports the establishment of session keys to sup-
port network confidentiality and integrity services.
Derivatives of Kerberos have been used to provide
authentication and key establishment services for AFS
[64], DCE [53], and ONC RPC [21]. Kerberos and sys-
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tems that rely on Kerberos have been suggested as a
means of providing security for the World Wide Web
[18][36][37].

Kerberos is based on symmetric cryptography with
a trusted key distribution center (KDC) for each realm.
The Kerberos KDC has access to the secret key of every
principal in its realm. Consequently, a compromise of
the KDC can be catastrophic. This is generally
addressed by requiring that the KDC be both physically
secure and dedicated solely to running the Kerberos
authentication server [46].3 A typical environment also
uses physically-secure dedicated systems for the servers
using Kerberos. Without these environmental assump-
tions, the Kerberos authentication service and the Ker-
berized server applications would require secure
operating system features to rigorously ensure that they
are tamperproof and unbypassable. For the sake of argu-
ment, the remainder of this section will consider these
environmental assumptions to be true and focus only on
the security of the client workstations.

Kerberos was designed for an environment where
the client workstations and the network are assumed to
be completely untrustworthy [10][45]. However, since
the software on the client workstation mediates all inter-
actions between its user and the Kerberized server appli-
cations, this assumption implies that the Kerberized
server applications must view all client applications as
potentially malicious software. Furthermore, a Kerber-
ized server application has no means of establishing a
trusted path to a user on a client workstation, since that
would require trusted code on the client workstation.
Thus, in a system that uses Kerberos, malicious software
executed by a user is free to arbitrarily modify or leak a
user’s information, with no means of confinement; no
distinctions between a user’s legitimate requests and the
requests of malicious software are possible. Given the
increasing ease with which malicious software may be
introduced into a system, the Kerberos environmental
model seems untenable. As noted in [14], secure end-to-
end transactions require trusted code at both end points.

As a basis of further discussion, suppose that there
is a base set of trustworthy software on the client work-
stations which is protected against tampering, but that
the client workstation operating system still lacks mech-
anisms for mandatory security and trusted path. Further-

3. Variants of Kerberos have been proposed that use asym-
metric cryptography either to reduce the cost incurred by a
penetration of the KDC or to completely eliminate the
need for the KDC [63] [66][42][18].

more, suppose that the client workstation is a single-user
system which does not export any services to other sys-
tems. In spite of these assumptions, a user is still vulner-
able to attacks by malicious software, such as mobile
code downloaded by the user.

If the malicious software could spoof the client-side
authentication program to the user, then it may be able
to obtain a user’s password. Even with one-time pass-
words, this attack would permit the malicious software
to act on behalf of the user during the login session. A
trusted path mechanism in the client workstation’s oper-
ating system can be used to prevent such an attack.
Additionally, such a trusted path mechanism in combi-
nation with support for a network protected path can be
used to provide a trusted path between users and server
applications.

If the malicious software can read the files used by
the Kerberos client software to store tickets and session
keys, then the malicious software may directly imper-
sonate the user to the corresponding Kerberized server
applications. Even if the session keys are encapsulated
within a hardware cryptographic token, the malicious
software can invoke the cryptographic token on behalf
of the user, exploiting the misuse vulnerability discussed
in section 3.2. Mandatory security mechanisms can be
used to rigorously protect either the file or the crypto-
graphic token against access by malicious software.

4.3 Network Security Protocols
The IPSEC network security protocols [5][3][4] are

used to provide authentication, integrity, and confidenti-
ality services at the IP layer. Typical implementations of
the IPSEC protocols rely on application-space key man-
agement servers to perform key exchanges and supply
keys for security associations. The IPSEC module in the
network stack communicates with the local key manage-
ment server via upcalls to retrieve the necessary infor-
mation.

SSL [69] is another network security protocol that
provides authentication, integrity, and confidentiality
services and a negotiation service for keys and crypto-
graphic algorithms. SSL, however, is implemented
entirely in application space and requires no kernel
modifications. SSL has been implemented as a library
that interposes on socket calls to incorporate the SSL
protocol between the underlying transport protocol of
the socket (e.g., TCP) and the application protocol (e.g.,
HTTP).
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Since it relies on application-space cryptography,
the key management server used by IPSEC is subject to
the vulnerabilities described in section 3.2 and requires
mandatory security mechanisms in the operating system
for adequate protection. In turn, since the protection
provided by IPSEC depends on the protection of the
keys, mandatory security mechanisms in the operating
system are also crucial to meeting the security require-
ments of IPSEC. Since the complete SSL implementa-
tion operates in application space, it is directly subject to
the vulnerabilities described in section 3.2 and requires
mandatory security mechanisms in the operating system
for adequate protection.

Both IPSEC and SSL are intended to provide secure
channels. However, as noted in [14], an end-to-end
secure transaction requires a secure channel and secure
end points. If an attacker can penetrate one of the end
points and directly access the unprotected data, then the
protection provided by IPSEC and SSL is only illusory.

4.4 Firewalls
A network firewall is a mechanism for enforcing a

trust boundary between two networks. The analysis of
this section is based on the discussions in [17][9][11][6].
Commonly, firewalls are used to maintain a separation
between insiders and outsiders for an organization’s
computing resources. Internal firewalls may also be
used to provide separation between different groups of
insiders or to provide defense-in-depth against outsid-
ers.

Modern firewall architectures typically involve the
use of bastion hosts; in a screened subnet architecture,
there may be an external bastion host on a perimeter net-
work, which is highly exposed to outsiders, and an inter-
nal bastion host on the internal network, which is
exposed to the external bastion host. The security of the
bastion hosts is crucial to the security provided by the
firewall. To reduce risk, bastion hosts are typically dedi-
cated systems, only providing the minimal services
required. Even with such minimal configuration, flaws
in the proxy servers on the bastion host may permit pen-
etration. However, mandatory security mechanisms in
the operating systems of the bastion hosts may be used
to confine proxy servers so that penetrations are nar-
rowly limited. Similarly, the bastion host’s mandatory
security mechanisms may be used to protect proxy serv-
ers against tampering.

Firewalls provide no protection against malicious
insiders. Typically, insiders can easily leak information

through the firewall. Malicious insiders can construct
tunnels to permit outsiders to perform inbound calls
through the firewall or may provide ways of bypassing a
firewall entirely. Additionally, malicious insiders can
exploit data leaked between users within the firewall.
Although internal firewalls may be used to partition
insiders into multiple trust classes, the granularity of
protection is quite limited in comparison to what can be
provided by a secure operating system.

The ability of malicious insiders to leak data
through the firewall can be confined by mandatory secu-
rity mechanisms in the operating systems of the internal
hosts. Likewise, mandatory security mechanisms in the
operating systems of the internal hosts can confine out-
siders who perform inbound calls through tunnels con-
structed by a malicious insider to the security domains
in which the malicious insider is allowed to operate.

In addition to the threat of malicious insiders, a fire-
wall is at risk from the threat of malicious software exe-
cuted by benign insiders. Typically, firewalls do not
require that insiders strongly authenticate themselves to
the firewall in order to access external services through
the firewall [40]. Hence, if a benign insider executes
malicious software on an internal host, the malicious
software may seek to subvert the protection of the fire-
wall in the same fashion as a malicious insider. An
example of using a malicious Java applet to enable out-
siders to penetrate a firewall is given in [40]. Even if
insiders are required to strongly authenticate themselves
to the firewall, a benign insider may still execute a trojan
horse whose overt purpose requires external access; in
this case, the malicious software may still subvert the
protection of the firewall.

Mandatory security mechanisms in the operating
systems of the internal hosts may be used to protect
users against execution of malicious software or to con-
fine such software when it is executed. If strong authen-
tication is required prior to accessing external services,
mandatory security mechanisms could be used to ensure
that only trustworthy software on the internal hosts can
communicate with the strong authentication mechanism
on the firewall. In any case, the mandatory security
mechanisms would limit the ability of malicious soft-
ware to leak information or support inbound calls.

Firewalls are also susceptible to malicious data
attacks [62]. Some example malicious data attacks rele-
vant to firewalls are described in [68][40][16]. As with
malicious insiders and malicious software, mandatory
security mechanisms in the operating systems of the
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bastion hosts and the internal hosts may be used to con-
fine malicious data attacks.

When inbound services are supported by a firewall,
the firewall itself cannot protect the remote system
against compromise. The remote system’s operating
system must protect against misuse of the allowed
inbound services and must protect any information
acquired through the inbound service against leakage.
Mandatory security mechanisms in the remote system’s
operating system may be used to provide such protec-
tion. Additionally, mandatory security mechanisms in
the internal host’s operating system are needed to con-
fine any attack from a penetrated remote system.

When a benign insider wishes secure access to a
remote service, the firewall itself cannot provide com-
plete protection for the use of the remote service. The
internal host’s operating system must protect against any
attempts by the server to trick the client into misusing its
privileges, as in the case where a browser executes a
malicious applet provided by a server; mandatory secu-
rity mechanisms in the internal host’s operating system
may be used to confine these client applications.

5 System Security
No single technical security solution can provide

total system security; a proper balance of security mech-
anisms must be achieved. Each security mechanism pro-
vides specific security functions and should be designed
to only provide those functions. It should rely on other
mechanisms for support and for required security ser-
vices. In a secure system, the entire set of mechanisms
complement each other so that they collectively provide
a complete security package. Systems that fail to
achieve this balance will be vulnerable.

As has been shown throughout this paper, a secure
operating system is an important and necessary piece to
the total system security puzzle, but it is not the only
piece. A highly secure operating system would be insuf-
ficient without application-specific security built upon
it. Certain problems are actually better addressed by
security implemented above the operating system. One
such example is an electronic commerce system that
requires a digital signature on each transaction. A appli-
cation-space cryptographic mechanism in the transac-
tion system protected by secure operating system
features might offer the best system security solution.

No single security mechanism is likely to provide
complete protection. Unsolved technical problems,
implementation errors and flawed environmental

assumptions will result in residual vulnerabilities. As an
example, covert channels remain a serious technical
challenge for secure operating system designers. These
limitations must be understood, and suitable measures
must be taken to deploy complementary mechanisms
designed to compensate for such problems. In the covert
channel example, auditing and detection mechanisms
should be utilized to minimize the chances that known
channels are exploited. In turn, these should depend on
secure operating systems to protect their critical compo-
nents, such as audit logs and intrusion sensors, because
they are subject to the same types of vulnerabilities as
those discussed throughout this paper.

6 Summary
This paper has argued that the threats posed by the

modern computing environment cannot be addressed
without secure operating systems. The critical operating
system security features of mandatory security and
trusted path have been explained and contrasted with the
inadequate protection mechanisms of mainstream oper-
ating systems. This paper has identified the vulnerabili-
ties that arise in application-space mechanisms for
access control and cryptography and has demonstrated
how mandatory security and trusted path mechanisms
address these vulnerabilities. To provide a clear sense of
the need for these operating system features, this paper
has analyzed concrete examples of current approaches
to security and has shown that the security provided by
these approaches is inadequate in the absence of such
features. Finally, the reader was given a perspective of
system security where both secure operating systems
and application-space security mechanisms must com-
plement each other in order to provide the correct level
of protection.

By arguing that secure operating systems are indis-
pensable to system security, the authors hope to spawn a
renewed interest in operating system security. If security
practitioners were to more openly acknowledge their
security solution’s operating system dependencies and
state these dependencies as requirements for future
operating systems, then the increased demand for secure
operating systems would lead to new research and
development in the area and ultimately to commercially
viable secure systems. In turn, the availability of secure
operating systems would enable security practitioners to
concentrate on security services that belong in their par-
ticular components rather than dooming them to try to
address the total security problem with no hope of suc-
cess.
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